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Is a color superconductor
topological ?

1. What is topological superconductor ?
2. Is a color superconductor topological ?
3. Possible physical implications

Phys. Rev. D 81, 074004 (2010)  [arXiv:1001.2555]
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What is topological superconductor ?
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/28Rapid progress on discovery of
new topological states of matter

Examples of topological insulators

• quantum Hall effect (2D)  found in 1980
• quantum spin Hall effect (2D)  proposed in 2005 / found in 2007
• topological insulators (3D)  proposed in 2007 / found in 2008

based on the seminal paper
by N. Read & D. Green in Phys. Rev. B (2000)
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Examples of topological superconductors

• px+i py superconductor (2D)  possibly realized in Sr2RuO4

• B phase of 3He (3D)
• ...



/28px+i py superconductor in 2D
• order parameter �ψ−pψp� = (px + ipy) ∆

Hp =

�
p2

2m − µ (px + ipy) ∆
(px − ipy) ∆ − p2

2m + µ

�

= �hp · �σ with �hp =
�
px ∆, −py ∆, p2

2m − µ
�

• mean-field Hamiltonian (in momentum space):

• spectrum is gapped for μ≠0 : Ep =
���hp

�� =
�� p2

2m − µ
�2 + p2∆2

Ep

p

Ep

p

Ep

p

μ>0  “BCS side” μ<0  “BEC side”μ=0
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/28Vortex zero mode
Bogoliubov-de Genne equation
in the presence of a vortex :

localized zero energy solution but only for μ>0
(When μ<0, the solution exponentially grows)

 Vortex in px+ipy superconductor for μ>0
 supports a localized gapless fermion

∆(x) = eiθ|∆(r)|
�

p̂2

2m − µ 1
2 {p̂−,∆(x)}

1
2 {p̂+,∆∗(x)} − p̂2

2m + µ

��
u
v

�
= E

�
u
v

�

with p̂± = −i∂x ± ∂y
vortex

E

bound state
at E=0

�
u
v

�

r→∞
→ ei π

4

�
1
−i

�
J0

��
2mµ− (m|∆|)2 r

�
e−m|∆|r
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continuum

bulk gap



/28Gapless edge state

x<0
superconductor

Δ≠0
μ>0

N=1

x>0
vacuum

Δ=0
μ<0

N=0

Bogoliubov-de Genne equation
in the presence of a boundary

localized solution only for μ>0
(When μ<0, the solution exponentially grows)

�
p̂2

2m − µ p̂−∆
p̂+ ∆ − p̂2

2m + µ

��
u
v

�
= E

�
u
v

�

boundary

E

py

E = ∆ pywith linear dispersion :

�
u
v

�

x<0

= e−i π
4

�
1
i

�
eipyy+m∆x cos

��
2mµ− (m∆)2 x

�

 Boundary of px+ipy superconductor for μ>0
 supports a localized gapless fermion
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bound state

bulk gap

continuum



/28Topological charge

Hp =

�
p2

2m − µ (px + ipy) ∆
(px − ipy) ∆ − p2

2m + µ

�

= �hp · �σ with �hp =
�
px ∆, −py ∆, p2

2m − µ
�

ĥp ≡
�hp���hp

�� is a map from  p2-space (≃S2)  to  S2 (h-space)

N =
1
8π

�
dp �ab �ijk ĥi ∂aĥj ∂b ĥk

�p ĥ

winding number

  Topological invariant can be defined for
  a gapped Hamiltonian in momentum space

π2(S2) = Z
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/28Topological phase transition
system is topological ! (N≠0)

N =





1 for µ > 0

0 for µ < 0 system is not topological (N=0)

1. Topological charge “N” can be defined 
    for a gapped Hamiltonian in momentum space
2. Topological charge is invariant as long as the gap is open
3. The system is topological if N≠0
4. A boundary (vortex) supports a localized gapless fermion

0
μ

N=1 (μ>0)N=0 (μ<0)

topological phase transition
(2 phases cannot be distinguished by symmetries)
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1. Topological charge “N” can be defined 
    for a gapped Hamiltonian in momentum space
2. Topological charge is invariant as long as the gap is open
3. The system is topological if N≠0
4. A boundary (vortex) supports a localized gapless fermion

10
E

pz

topological
insulator

or
3He-B

E

py

px

               quantum
spin Hall effect

↑↓

N≠0

N≠0



/28Classification of gapped states by topology

TRS PHS SLS d = 1 d = 2 d = 3

A 0 0 0 – Z –

AI +1 0 0 – – –

AII −1 0 0 – Z2 Z2

AIII 0 0 1 Z – Z
BDI +1 +1 1 Z – –

CII −1 −1 1 Z – Z2

D 0 +1 0 Z2 Z –

C 0 −1 0 – Z –

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 – – Z

name symmetry dimension

Whether the topological charge (Z or Z2) can be defined
is determined by the symmetry and spatial dimension

px+i py SC

A. P. Schnyder et al., Phys. Rev. B (2008)  &  A. Kitaev, arXiv:0901.2686
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QHE
QSHE
topological insulator

3He-B

C
−1
HC = −H∗

C
2 = ±1

χ−1
Hχ = −HT

−1
HT = H

∗

T
2 = ±1



/28Classification of gapped states by topology

TRS PHS SLS d = 1 d = 2 d = 3

A 0 0 0 – Z –

AI +1 0 0 – – –

AII −1 0 0 – Z2 Z2

AIII 0 0 1 Z – Z
BDI +1 +1 1 Z – –

CII −1 −1 1 Z – Z2

D 0 +1 0 Z2 Z –

C 0 −1 0 – Z –

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 – – Z

name symmetry dimension

These classifications are for noninteracting Hamiltonians 
(open problem for interacting Hamiltonians)

Whether the topological charge (Z or Z2) can be defined
is determined by the symmetry and spatial dimension

px+i py SC

A. P. Schnyder et al., Phys. Rev. B (2008)  &  A. Kitaev, arXiv:0901.2686
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QHE
QSHE
topological insulator

3He-B
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TRS PHS SLS d = 1 d = 2 d = 3

A 0 0 0 – Z –

AI +1 0 0 – – –

AII −1 0 0 – Z2 Z2

AIII 0 0 1 Z – Z
BDI +1 +1 1 Z – –

CII −1 −1 1 Z – Z2

D 0 +1 0 Z2 Z –

C 0 −1 0 – Z –

DIII −1 +1 1 Z2 Z2 Z
CI +1 −1 1 – – Z

 Any (noninteracting) gapped states of matter
 can be asked if it is topological or not

Is a color superconductor topological ?

color
superconductor

Classification of gapped states by topology
A. P. Schnyder et al., Phys. Rev. B (2008)  &  A. Kitaev, arXiv:0901.2686
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Is a color superconductor 
topological ?
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/28Topological charge in 3D
Topological charge for “class DIII” Hamiltonians in 3D
�
C
−1
HC = −H∗

T
−1
HT = H

∗ with C
2 = 1 T

2 = −1
�

Hp = Up

�
Ep 0
0 −Ep

�
U†

p

Qp ≡ Up

�
11 0
0 −11

�
U†

p →
�

0 qp

q†p 0

�

Hamiltonian in momentum space

winding number :

is a map from p3-space to unitary matrixqp ∈ U(n)

π3[U(n)] = Z (n ≥ 2)

N =
1

24π2

�
dp �ijk Tr

�
(q−1

p ∂iqp)(q−1
p ∂jqp)(q−1

p ∂kqp)
�

E

!

Generic Insulator Flat Band Model

E

G

1

-1

0

A. P. Schnyder et al., Phys. Rev. B (2008)
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Hp Qp



/28Color superconductor (mean field)

mu = md = ms = m

�
ψT

a,fCγ5ψb,g

�
= ∆ �Iab�Ifg

• equal quark masses

• color-flavor-locked pairing

All 9 quarks are gapped

H =
�
−iα · ∂ + βm− µ ∆(x)

∆∗(x) iα · ∂ − βm + µ

�

 For comparison, we also consider parity-odd pairing

(parity even :               )∆R = ∆L

 each sector is described by
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�
ψT

a,fCψb,g

�
= ∆ �Iab�Ifg ⇔ ∆R = −∆L

⊗ 9



/28Topological charge 17

In the chiral limit (m=0) : H = HR +HL ⇒ N = NR + NL

even parity paring odd parity paring

free-space Hamiltonian with                 : constant

N = 0

N = 0 for m2 > µ2 + ∆2
0

topologically nontrivial

topologically trivial

NR =
∆0

2|∆0| NL = − ∆0

2|∆0| NR =
∆0

2|∆0| NL =
∆0

2|∆0|

N =
∆0

|∆0| for m2 < µ2 + ∆2
0

topological
phase transition

m �= 0

m �= 0

∆(x) = ∆0



/28Fermion spectrum @ vortex 18

rotating
CFL quark matter

vortex line

z solve BdG equation
in the presence of
a vortex line :

∆(x) = eiθ|∆(r)|



/28Fermion spectrum @ vortex 19

E

pz

m=0  (NR, NL≠0) :  2 localized gapless fermions
•              for right-handed
•                for left-handed

E = vpz

RL

E = −vpz

E

pz

z

R

L

m≠0  (N=0) :  2 localized fermions become gapped
E = ±v

�
m2 + p 2

z

even parity paring

m �= 0
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•                             (N≠0) :  gaplessness is preserved
•                             (N=0) :  localized fermions disappear

Fermion spectrum @ vortex 20

E

pz

RL
E

pz

z

R

L

m≠0

odd parity paring

m2 < µ2 + |∆(∞)|2

m2 > µ2 + |∆(∞)|2

m �= 0

m=0  (NR, NL≠0) :  2 localized gapless fermions
•              for right-handed
•                for left-handed

E = vpz

E = −vpz
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 Low-energy effective theory should involve
 (nearly) gapless fermions on a vortex line

0 1 2 3 4 5
�
Μ

0.0

0.2

0.4

0.6

0.8

1.0
v�c

Effective 1D theory @ vortex 21

Bulk fermions are gapped by ∆(r →∞)

v =
�∞
0 dr r

�
J2

0 (µr)− J2
1 (µr)

�
e−2

R r
0 |∆(r�)|dr�

�∞
0 dr r [J2

0 (µr) + J2
1 (µr)] e−2

R r
0 |∆(r�)|dr�

velocity

simple case
Δ(r)=Δ

E

pz

ψR(L)†
pz

= ψR(L)
−pz

Majorana fermions

bulk gap
H1D =

v

2

�
dpz

2π

�
pz ψR†

pz
ψR

pz
− pz ψL†

pz
ψL

pz

�
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 Low-energy effective theory should involve
 (nearly) gapless fermions on a vortex line

0 1 2 3 4 5
�
Μ

0.0

0.2

0.4

0.6

0.8

1.0
v�c

Effective 1D theory @ vortex 22

Bulk fermions are gapped by ∆(r →∞)

v =
�∞
0 dr r

�
J2

0 (µr)− J2
1 (µr)

�
e−2

R r
0 |∆(r�)|dr�

�∞
0 dr r [J2

0 (µr) + J2
1 (µr)] e−2

R r
0 |∆(r�)|dr�

velocity

simple case
Δ(r)=Δ

mass term for even parity pairing

E

pz

bulk gap
H1D =

v

2

�
dpz

2π

�
pz ψR†

pz
ψR

pz
− pz ψL†

pz
ψL

pz

+imψR†
pz

ψL
pz
− imψL†

pz
ψR

pz

�

ψR(L)†
pz

= ψR(L)
−pz

Majorana fermions
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CFL quark
matter

gapless fermion @ boundary ? 23

boundary vacuum



/2824gapless fermion @ boundary ?

z>0
chiral-broken

vacuum
μ,Δ=0
m>0

E

py

px

odd parity paring

localized gapless fermion

N=0

Majorana fermion : ψ†
p⊥ = ψT

−p⊥σ1

E = ±v
�

p 2
x + p 2

y

H2D =
v

2

�
dp⊥
(2π)2

ψ†
p⊥(σ⊥ · p⊥)ψp⊥

with v =
���1 +

m

∆ + iµ

���/
�
1 +

m

∆

�

z<0
color

superconductor
μ,Δ>0
m=0

N=1



/2825gapless fermion @ boundary ?

No gapless fermion

even parity paring
z>0

chiral-broken
vacuum
μ,Δ=0
m>0

N=0

z<0
color

superconductor
μ,Δ>0
m=0

N=0
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Conclusions
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/2827Is a color superconductor topological ?

Yes, in the chiral limit (NR, NL≠0)

UB(1) vortex in rotating CFL quark matter supports
9 sets of gapless right- and left-handed quarks

E

pz

RL

⊗ 9

z

R

L

Microscopic origin of axial current flowing on a vortex 
derived using anomalies

E = ±vpz

D. T. Son & A. R. Zhitnisky, Phys. Rev. D (2004)

5 on a non-Abelian vortex [Yasui, Itakura, Nitta (arXiv:1001.3730)]

J5
z =

µ

2π
× (vorticity)



/2828Is a color superconductor topological ?

No, with nonzero quark mass (N=0)

localized quarks become gapped

vm/∆ ∼ 5× 10−3 for µ ∼ 500 MeV ∆ ∼ 50 MeV m ∼ 10 MeV

could be important low-energy degrees of freedom
• impact on the physics of rotating neutron/quark stars ?
  (transport property, neutrino emissivity, pulser kick, ...)

vm→ m (∆/µ)2 ln (µ/∆) � mNG → m (∆/µ)

• topology of Hamiltonian ⇔ existence of gapless fermions
• effect of interaction

E

pz
E = ±v

�
m2 + p 2

z

• much lighter than bulk quarks

• parametrically lighter than pseudo-NG bosons
D. T. Son & M. A. Stephanov

Phys. Rev. D (2000)
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Backup slides

29



/28Topological phase transition
system is topological ! (N≠0)

N =





1 for µ > 0

0 for µ < 0 system is not topological (N=0)

• Topological charge is invariant 
   under the smooth deformation of Hamiltonian
• Topological charge can change
   only when the gap in spectrum closes

0
μ

N=1 (μ>0)N=0 (μ<0)

topological phase transition
(2 phases cannot be distinguished by symmetries)

What are physical consequences of nontrivial topology?
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/28We have learned ...
1. Topological charge “N” can be defined 
    for a gapped Hamiltonian in momentum space
2. Topological charge is invariant as long as the gap is open
3. The system is topological if N≠0

4. A vortex / boundary supports a localized gapless fermion
5. px+i py superconductor in 2D for μ>0 is one such example

E

py

vortex boundary

bound state

31

bulk gap



/28Classification of gapped states by topology 32

N=0 1-1-2 2. . . . . .

Space of gapped Hamiltonians


